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Abstract

A discrete-time financial market model is considered with a sequence of investors
whose preferences are described by utility functions Un defined on the whole real line.
Under suitable hypotheses, it is shown that whenever Un tends to a utility function
U∞, the respective optimal strategies converge too. Under additional assumptions, we
estimate the rate of convergence. We also establish the continuity of the Davis and
Hodges-Neuberger prices with respect to changes in agents’ preferences.
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1 Introduction

In the present article we are interested in the following question: does the convergence of
agents’ preferences entail the convergence of the respective optimal strategies? We assume
that these preferences are described by means of utility functions, i.e. strictly concave,
increasing functions Un, n ∈ N converging to some utility function U∞. In Jouini and
Napp (2004) the case of a complete Brownian market model was studied, where investors’
utility functions were defined on the positive axis. It was shown that the convergence of
optimal strategies indeed takes place under appropriate conditions.

In this paper we focus on different classes of models and agents: discrete-time markets
with finite time horizon and utility functions defined on the whole real line. Note that
these financial market models are, unlike the ones in Jouini and Napp (2004), generically
incomplete. The study of such markets is totally different and more involved than that of
complete markets. Thus we have to make extra assumptions such that strong no arbitrage
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and bounded price processes (see section 2.1 for precise definitions). In section 3, we will
give counter-examples which show why such assumptions are necessary.

Our main result is that the convergence of utility functions implies the convergence
of the respective optimal strategies. Under stronger assumptions we also show that the
convergence rate is the same in both cases.

In incomplete markets the choice of a suitable pricing rule is a fundamental issue. So
we establish the convergence of two types of utility-based prices: Davis price (see Davis
(1997)) and utility indifference price (see Hodges and Neuberger (1989)).

2 Model description and main results

Let (Ω,F , (Ft)0≤t≤T , P ) be a discrete-time filtered probability space with time horizon
T ∈ N. We assume that F0 coincides with the family of P -zero sets.

2.1 Market description

Let {St, 0 ≤ t ≤ T} be a d-dimensional adapted process representing the discounted
– by some numéraire – price process of d securities in a given economy. The notation
∆St := St−St−1 will often be used. Trading strategies are given by d-dimensional processes
{ψt, 1 ≤ t ≤ T} which are supposed to be predictable (i.e. ψt is Ft−1-measurable). The
class of all such strategies is denoted by Φ. Denote by L∞, L∞

+ the sets of bounded,
nonnegative bounded random variables, respectively, equipped with the supremum norm
‖ · ‖∞.

Trading is assumed to be self-financing, so the value process of a portfolio ψ ∈ Φ is

V z,ψ
t := z +

t
∑

j=1

〈ψj , ∆Sj〉,

where z is the initial capital of the agent in consideration and 〈·, ·〉 stands for the inner
product in R

d.
The following absence of arbitrage condition is standard:

(NA) : ∀ψ ∈ Φ (V 0,ψ
T ≥ 0 a.s. ⇒ V 0,ψ

T = 0 a.s.).

However, we need to assume a certain strengthening of the above concept hence an
alternative characterization of (NA) is provided in the Proposition below. Denote by
Dt(ω) the smallest affine hyperplane containing the support of the (regular) conditional
distribution of ∆St with respect to Ft−1. We refer to Proposition 8.1 of Rásonyi and
Stettner (2005) for more details about the (random) set Dt. Let Ξt denote the set of
Ft-measurable d-dimensional random variables,

Ξ̃t := {ξ ∈ Ξt : ξ ∈ Dt+1 a.s. |ξ| = 1 on {Dt+1 6= {0}}}.

Proposition 2.1 (NA) holds if and only if there exist Ft-measurable, strictly positive,
random variables βt, 0 ≤ t ≤ T − 1 such that

ess. inf
ξ∈Ξ̃t

P (〈ξ,∆St+1〉 < −βt|Ft) > 0 a.s. on {Dt+1 6= {0}}. (1)
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Proof. The direction (NA) ⇒ (1) is Proposition 3.3 of Rásonyi and Stettner (2005). The
other direction is clear from the implication (g) ⇒ (a) of Theorem 3 in Jacod and Shiryaev
(1998). 2

We formulate a stronger concept of absence of arbitrage. Similar strengthenings ap-
peared in Schäl (1999, 2000).

Assumption 2.2 There exist constants β, κ > 0 such that

ess. inf
ξ∈Ξ̃t

P (〈ξ,∆St+1〉 < −β|Ft) > κ a.s. on {Dt+1 6= {0}}.

We show in section 3 that the problems of interest in this paper can be ill-posed if Assump-
tion 2.2 is not satisfied.

The following technical assumption roughly says that there are no redundant assets,
even conditionally. It is possible to work without it, see Remark 2.13.

Assumption 2.3 Dt is almost surely equal to R
d, for all 1 ≤ t ≤ T .

2.2 Agents’ preferences

Introduce the notation N̄ := N ∪ {∞}. Consider a sequence of agents with preferences
converging to some limiting preference.

Assumption 2.4 Suppose that Un : R → R, n ∈ N̄ is a sequence of strictly concave and
increasing continuously differentiable functions such that for all x ∈ R

Un(x) → U∞(x), n → ∞.

Remark 2.5 Note that the above Assumption implies the uniform convergence of both Un

and U ′
n on compacts, by p. 90 and p. 248 of Rockafellar (1970).

A further technical condition needs to be imposed.

Assumption 2.6 Assume that there exist 0 < γ < 1, x̃ > 0 such that for all λ ≥ 1, y ≥ x̃
and for all n ∈ N̄

Un(λy) ≤ λγUn(y).

Remark 2.7 This assumption says that agents’ utility functions satisfy a certain “uniform
asymptotic elasticity” condition at +∞, see Kramkov and Schachermayer (1999), Schacher-
mayer (2001) and Remark 2.4 of Rásonyi and Stettner (2005) about this notion, compare
also to property (P3) on p. 135 of Jouini and Napp (2004). Without some hypothesis of
this kind there might not exist an optimal strategy, see section 7 of Rásonyi and Stettner
(2005). All results of the present paper hold under a similar uniform asymptotic elasticity
condition at −∞ instead of +∞.

In case we would like to estimate the rate of convergence, a strengthening of Assumption
2.4 is needed.

Assumption 2.8 The functions Un, n ∈ N̄ are strictly concave, increasing and twice
continuously differentiable. For all N > 0, the second derivative satisfies the bounds

`(N) ≤ |U ′′
n(x)| ≤ L(N), x ∈ [−N, N ], n ∈ N̄,
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with constants `(N), L(N) > 0 and there exists a sequence of real numbers g(n) → 0, n →
∞ such that

|Un(0) − U∞(0)| + sup
x∈[−N,N ]

|U ′
n(x) − U ′

∞(x)| ≤ C(N)g(n), n ∈ N, (2)

where the C(N) are suitable constants.

Remark 2.9 The condition on U ′′
n is a kind of “uniform strict concavity” property. Under

Assumption 2.8 the inequality

|Un(x) − U∞(x)| ≤ |Un(0) − U∞(0)| +
∫ x

0
|U ′

n(y) − U ′
∞(y)|dy (3)

shows that Un tends to U∞ uniformly on compacts with convergence speed O(g(n)). Note
that if Un tends to U∞ uniformly on compacts with convergence speed O(g(n)) then (2)
does not always hold true.

If we assume that U ′′
n converges to U ′′

∞ at the rate g(n), U ′′
∞ < 0 and also that there exists

some x0 ∈ R such that Un(x0) and U ′
n(x0) converge respectively to U∞(x0) and U ′

∞(x0)
at the rate g(n), then one can prove (by an argument similar to (3)) that Assumption 2.8
holds.

Example 2.10 Typical examples are the sequences Un(x) = −e−αnx, x ∈ R, 0 < αn, n ∈
N̄ where αn → α∞ at a given rate O(g(n)).

2.3 Optimization problems and convergence of optimal solutions

Fix any element G ∈ L∞
+ and define

un(G, z) := sup
ψ∈Φ(Un,G,z)

EUn(V z,ψ
T − G),

where Φ(Un, G, z) denotes the family of strategies ψ ∈ Φ such that EUn(V z,ψ
T − G) exists.

If G is interpreted as the payoff at time T of some derivative security, the quantity
un(G, z) represents the supremum of expected utility from initial capital z when delivering
G at the terminal date.

Theorem 2.11 Suppose that S is bounded and Assumptions 2.2, 2.3, 2.4 and 2.6 hold.
Then there exist almost surely unique optimal strategies ψ∗

n,t(G, z), 1 ≤ t ≤ T, n ∈ N̄

satisfying

un(G, z) = EUn(V
z,ψ∗

n(G,z)
T − G).

For all 1 ≤ t ≤ T almost surely

lim
n→∞

ψ∗
n,t(G, z) = ψ∗

∞,t(G, z).

Moreover, limn→∞ un(G, z) = u∞(G, z) uniformly on compact sets.

Theorem 2.12 Assume the hypotheses of the previous Theorem, with Assumption 2.4
replaced by 2.8. For all N > 0 there exist suitable constants Jt(N) and J(N) such that,
for all 1 ≤ t ≤ T ,

sup
z∈[−N,N ]

|ψ∗
n,t(G, z) − ψ∗

∞,t(G, z)| ≤ Jt(N)g(n),

sup
z∈[−N,N ]

|un(G, z) − u∞(G, z)| ≤ J(N)g(n).
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Remark 2.13 Without Assumption 2.3 proofs get messy and we obtain that the suitably
defined projections of the optimal strategies on Dt converge to the projection of the limiting
strategy.

Remark 2.14 Consider random utility functions Un(x, ω). In this paper we study the eco-
nomic meaningful case where Un(x, ω) = Un(x − G(ω)). Nevertheless results of Theorem
2.11 (resp. 2.12) can be extended to general random utility functions if we assume an
almost sure analog of Assumption 2.4 (resp. 2.8) and the additional hypothesis :

∀x, ess. sup
Ω,n∈N̄

|Un(x, ω)| < ∞ and ess. inf
Ω,n∈N̄

|U ′
n(0, ω)| > 0.

2.4 Applications to convergence of utility based prices

Take again G ∈ L∞
+ , interpreted as the payoff at time T of some derivative security.

A remarkable pricing method has been suggested in Davis (1997) : to evaluate claim G
using the measure

dQ(z)

dP
=

U ′(V
z,ψ∗(0,z)
T )

EU ′(V
z,ψ∗(0,z)
T )

,

where U is a suitable utility function and ψ∗(0, z) is the optimal strategy with initial
endowment z and without delivering any claim, i.e.

u(0, z) = sup
ψ∈Φ(U,0,z)

EU(V z,ψ
T ) = EU(V

z,ψ∗(0,z)
T ).

Under appropriate conditions (see section 6 of Rásonyi and Stettner (2005)), Q(z) indeed
defines an equivalent risk-neutral measure and the Davis price defined by

q(G, z) = EQ(z)(G)

is an arbitrage free price. In this way individual preferences of agents are taken into account
when choosing the pricing functional by some “marginal rate of substitution argument”,
see Davis (1997) or p. 229 of Bingham and Kiesel (1998) for more economic justifications
about this pricing rule.

Theorem 2.11 permits us to establish the continuity of Davis price with respect to
changes in the agents’ preferences.

Theorem 2.15 Under the hypotheses of Theorem 2.11, the Radon-Nykodim derivatives

dQn(z)

dP
=

U ′
n(V

z,ψ∗

n(0,z)
T )

EU ′
n(V

z,ψ∗

n(0,z)
T )

,

define equivalent martingale measures for S and Qn(z) → Q∞(z) in the total variation
norm. Consequently,

lim
n→∞

qn(G, z) = q∞(G, z), (4)

for any contingent claim G ∈ L∞
+ .

Moreover, under the additional assumption of Theorem 2.12, for all N > 0 there exists
some constant A(N) such that

sup
z∈[−N,N ]

|qn(G, z) − q∞(G, z)| ≤ A(N)g(n).
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Now consider another pricing concept, originating from Hodges and Neuberger (1989).
The Hodges-Neuberger or utility indifference price of some bounded contingent claim G is
the minimal amount of money to be paid to the seller and added to her initial capital so
that her utility when selling G is greater than the one she could get without selling it.

Definition 2.16 For any G ∈ L∞
+ and x ∈ R, the utility indifference price pn(G, x) is

defined as
pn(G, x) = inf{z ∈ R : un(G, x + z) ≥ un(0, x)}, n ∈ N̄.

It is easy to check that this quantity is well-defined and 0 ≤ pn(G, x) ≤ ‖G‖∞. In
our case un(G, ·), un(0, ·) are strictly increasing (see the statement of Proposition 4.7), so
un(G, x + pn(G, x)) = un(0, x).

Theorem 2.17 Under the hypotheses of Theorem 2.11,

lim
n→∞

pn(G, x) = p∞(G, x).

3 Counter-examples

In this section we demonstrate the pathologies which might arise in the absence of our
assumptions. In all the examples we will suppose G = 0 for simplicity, so our value function
will be

un(x) := sup
ψ∈Φ(U,0,x)

EUn(V ψ
T ).

Firstly, the convergence of optimal strategies may fail for unbounded price processes,
even though all the other assumptions hold.

Example 3.1 Define for all n ∈ N̄

Un(x) := 1 − (1 − x)2+1/n, x ≤ 0, Un(x) := (4 + 2/n)
√

x + 1 − 4 − 2/n, x > 0,

with the convention 1/∞ = 0. It is easily verified that Assumption 2.4 and 2.6 holds for
this sequence. Now set

α1 :=

∞
∑

k=2

1

k3log2k
, α2 :=

∞
∑

k=1

1

k2
.

Take T = 1 and ∆S1 such that

P (∆S1 = −k) =
1

2α1k3log2k
, k ≥ 2; P (∆S1 = δk) =

1

2α2k2
, k ≥ 1,

where δ > 0 is to be chosen later. Assumption 2.2 holds with e.g. β = 1 and κ = 1/3. As
∑

k≥0
1

kαlog2k
= ∞ for α < 1 and < ∞ for α ≥ 1, it is easy to check that for all n ∈ N and

ψ 6= 0 we have EUn(ψ∆S1) = −∞. Consequently ψ∗
n = 0 is optimal. On the other hand,

EU∞(∆S1) =
1

2
−

∞
∑

k=2

(k + 1)2

2α1k3log2k
+ 2

∞
∑

k=1

√
δk + 1

α2k2
− 2,

which is finite and, for δ sufficiently large, strictly greater than 0, so ψ∗
∞ (which exists by

Theorem 2.7 of Rásonyi and Stettner (2005)) cannot be 0.
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The following construction shows that if S fails to be bounded, the value functions un

may converge to ∞ instead of u∞.

Example 3.2 Let S0 := 0 and

P (∆S1 = k4 − 1) =
1√
k
− 1√

k + 1
, k ≥ 4, and P (∆S1 = −1) = 1/2.

Define also

Un(x) = x +
1

n
, x < 0,

Un(x) =
1

n

√
x + 1, 0 ≤ x ≤ n4 − 1,

Un(x) = n, x > n4 − 1.

This sequence converges pointwise to

U∞(x) = x, x < 0, U∞(x) = 0, x ≥ 0.

For x ≥ 0,

u∞(x) =
x − 1

2
1x<1

un(x) ≥ un(0) ≥ EUn(∆S1) ≥ −1

2
+

1

2n
+ nP (∆S1 ≥ n4 − 1) = −1

2
+

1

2n
+
√

n,

showing that un(x) → ∞ > u∞(x). These Un satisfy Assumption 2.6. With some extra
work it would be possible to construct a similar example with Un satisfying Assumption
2.4, too (i.e. Un strictly concave and smooth).

Now we point out what may go wrong in utility maximization if we drop Assumption
2.2: the value function u(x) := supψ∈Φ(U,0,x) EU(V ψ

T ) may be infinite even if S is bounded!

Example 3.3 Suppose that T = 2, F1 = P(N) and P ({n}) = 1/2n, n ≥ 1. Assume that
S0 = S1 = 0 and

P (∆S2 = −1/2n|F1)(n) = 1/2 = P (∆S2 = 1|F1)(n).

Define also

U(x) =
1

2
x + 1, x < 0, U(x) =

√
x + 1, x ≥ 0.

Taking ψ(n) := 22n − 1 we clearly have

u(0) ≥ EU(ψ∆S2) = EE(U(ψ∆S2)|F1) =
∞

∑

n=1

1

2n
[
1

2
U(−ψ(n)/2n) +

1

2
U(ψ(n))]

=

∞
∑

n=1

1

2n
[2n−2 +

1

2
+

1

2n+2
] = ∞.

In this example one can take κ1 = 1/2 constant, but β1 cannot be chosen constant, hence
Assumption 2.2 fails. A similar construction can be given where β1 is constant and κ1 is
not.
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4 Facts about utility maximization

4.1 Bounds on the optimal strategies

We work on the primal problem and use a dynamic programming procedure to prove the
existence of optimal strategies and to derive bounds on them. If we used the dual approach
(see Kramkov and Schachermayer (1999) and Schachermayer (2000)), we should find bounds
on the solution of the dual problem which is even more difficult to control.

Theorem 4.4 holds true under weaker hypotheses on (Un)n∈N̄
than Assumption 2.4.

What we need is the following:

Assumption 4.1 The function Un : R → R, n ∈ N̄ are concave, nondecreasing and
continuously differentiable,

sup
n∈N̄

|Un(x)| < ∞ for all x ∈ R, inf
n∈N̄

U ′
n(0) > 0.

In what follows, it is crucial that the asymptotic elasticity Assumption 2.6 admits a
reformulation which is preserved during the dynamic programming procedure. This is the
content of the next Condition. Let V : R → R be a function.

Condition 4.2 There exist C1, C2 > 0 such that

V (λx) ≤ λγV (x + C1) + C2λ
γ ,

V (λx) ≤ λV (x + C1) + C2λ
γ ,

for all x ∈ R and λ ≥ 1.

Fix some G ∈ L∞
+ and set Un,T (x, ω) := Un(x − G(ω)). Proposition 4.3 below initiates

the dynamic programming.

Proposition 4.3 Under Assumptions 2.6 and 4.1, Un,T satisfies Condition 4.2 almost
surely with constants C1, C2 independent from n.

Proof. Set C1 := ‖G‖∞, C3(x) := supn∈N̄
|Un(x)| and C4 := C3(0). Define Ũn(x) :=

Un(x) − Un(0). Then by Assumption 2.6 we have for x ≥ x̃ and λ ≥ 1 :

Ũn(λx) ≤ λγUn(x) + C4 ≤ λγŨn(x) + C4λ
γ + C4 ≤ λγŨn(x) + 2C4λ

γ .

For 0 ≤ x ≤ x̃, using monotonicity:

Ũn(λx) ≤ Ũn(λx̃) ≤ λγUn(x̃) + C4 ≤ λγC3(x̃) + C4

≤ λγŨn(x) + λγ [C4 + C3(x̃)],

since Ũn(x) ≥ 0 if x ≥ 0. For x ≤ 0, by concavity:

Ũn(λx) ≤ Ũn(x) + Ũ ′
n(x)(λ − 1)x ≤ Ũn(x) +

Ũn(x) − Ũn(0)

x
(λ − 1)x

≤ λŨn(x) ≤ λγŨn(x).

Putting together the estimations so far, we obtain that Condition 4.2 holds for Ũn, n ∈ N̄

with uniform constants C̃1 := 0, C̃2 := 2C4 + C3(x̃). Now for Un,T we get

Un,T (λx) ≤ Un(λx) ≤ Ũn(λx) + C4 ≤ λγŨn(x) + [C̃2 + C4]λ
γ

≤ λγUn(x) + [C̃2 + 2C4]λ
γ ≤ λγUn,T (x + C1) + [C̃2 + 2C4]λ

γ ,

showing that the first inequality of Condition 4.2 is true for Un,T , n ∈ N̄ with the choice
C2 := C̃2 + 2C4, uniformly in n. The second inequality follows in the same way. 2
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Theorem 4.4 Suppose that Assumptions 2.2, 2.6 and 4.1 hold. For all n ∈ N̄, we introduce
the following random functions :

Un,T (x) := Un(x − G),

Un,s(x) := ess. sup
ξ∈Ξs

E(Un,s+1(x + 〈ξ,∆Ss+1〉)|Fs), 0 ≤ s ≤ T − 1.

For all n ∈ N̄, 0 ≤ s ≤ T , Un,s are well-defined and satisfy

Un,s(x) < ∞. (5)

The functions Un,s have almost surely concave and increasing continuously differentiable
versions satisfying Condition 4.2 with constants uniform in n.

For all n ∈ N̄, 0 ≤ s ≤ T − 1 and x ∈ R, there exists ξ̃n,s+1(x) ∈ Ξs such that
ξ̃n,s+1 ∈ Ds+1 a.s. and

Un,s(x) = E(Un,s+1(x + 〈ξ̃n,s+1(x), ∆Ss+1〉)|Fs). (6)

For all 0 ≤ s ≤ T − 1, there exist nondecreasing functions Ms, M̂s and Hs : R+ → R+ such
that for all n ∈ N̄, x ∈ R:

|ξ̃n,s+1(x)| ≤ M̂s+1(|x|), (7)

Un(x − Ms+1(|x|)) ≤ Un,s+1(x) ≤ Un(x + Ms+1(|x|)), (8)

U ′
n,s(x) = E(U ′

n,s+1(x + 〈ξ̃n,s+1(x), ∆Ss+1〉)|Fs), (9)

U ′
n(Hs+1(|x|)) ≤ U ′

n,s+1(x) ≤ U ′
n(−Hs+1(|x|)). (10)

For all n ∈ N̄, z ∈ R the utility maximization problems

EUn(V z,ψ
T − G) → max., ψ ∈ Φ(Un, G, z),

admit optimal solutions ψ∗
n(z) given by

ψ∗
n,1(z) := ξ̃n,1(z), ψ∗

n,t+1(z) := ξ̃n,t+1(z +
t

∑

k=1

〈ψ∗
n,k(z), ∆Sk〉). (11)

There exists nondecreasing functions Υt : R+ → R+ such that for all n ∈ N̄, z ∈ R

|ψ∗
n,t(z)| ≤ Υt(|z|). (12)

and the value functions of the optimization problems are finite, i.e.

un(G, z) = Un,0(z) < ∞.

Remark 4.5 For the sake of notational simplicity we do not index the optimal solutions by
G, i.e. we denoted ψ∗

n,t(G, z) by ψ∗
n,t(z) and ξ̃n,t(G, x) by ξ̃n,t(x), for all 1 ≤ t ≤ T and

n ∈ N̄.

Proof. Suppose d = 1 for simplicity and let R denote a constant bound for the process
|∆S|.

Sections 4 and 5 of Rásonyi and Stettner (2005) will be used, but the estimations
have to be carried out in a more explicit way. The hypotheses which are needed there:
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E(Un,s(x)) > −∞, (5) and Condition 4.2 for Un,s ; these will be shown in the reasonings
below.

First note that E(Un,s(x)) > −∞ holds true by backward induction for all s = 0, . . . , T
because Un,s(x) ≥ E(Un,s+1(x)|Fs) and Un,T (x) ≥ Un(x − ‖G‖∞). From standard argu-
ments, Un,s are concave functions.

We shall apply backward induction to prove the statements (5) to (10). First, (5) is
trivial for s = T , (8) and (10) are trivial for s = T − 1 and Condition 4.2 for Un,T holds by
Proposition 4.3. Moreover, as S and G are bounded, it is easy to see that (5) holds true
for s = T − 1. So from Proposition 4.4, Lemma 4.9 and Proposition 6.5 of Rásonyi and
Stettner (2005), Un,T−1 have almost surely concave, increasing, continuously differentiable
versions and (6), (9) hold. Finally, (7) will follow just like in the induction step below.

Let us proceed supposing that the induction hypotheses hold for s ≥ t. We get from
(7) for s = t that

x + ξ̃n,t+1(x)∆St+1 ∈ [x − M̂t+1(|x|)R, x + M̂t+1(|x|)R],

and from (8) for s = t

Un,t+1(x + M̂t+1(|x|)R) ≤ Un

(

x + M̂t+1(|x|)R + Mt+1(|x| + M̂t+1(|x|)R)
)

because Mt+1 and Un are nondecreasing. Also

Un,t+1(x − M̂t+1(|x|)R) ≥ Un

(

x − M̂t+1(|x|)R − Mt+1(|x| + M̂t+1(|x|)R)
)

.

Defining

Mt(u) := M̂t+1(u)R + Mt+1(u + M̂t+1(u)R), u ∈ R+,

Mt is nondecreasing as M̂t+1 and Mt+1 are. Using (6) for s = t and the fact that Un,t+1 is
nondecreasing, we get that almost surely

Un(x − Mt(|x|)) ≤ Un,t(x) ≤ Un(x + Mt(|x|)), (13)

showing (8) for s = t−1. Moreover, as S is bounded, it is easy to see that (5) holds true for
s = t − 1. Then Condition 4.2 holds for Un,t−1 with the same constants as in Proposition
4.3, by the argument of Proposition 5.2 of Rásonyi and Stettner (2005). So we can again
apply Proposition 4.4 and Lemma 4.9 of the cited article and (6) holds for s = t − 1 and
Un,t−1 have almost surely concave and nondecreasing versions. Moreover, we get that from
Proposition 6.5 of the same paper that Un,t−1 has almost surely continuously differentiable
versions and (9) is satisfied.

It is also clear from (7), (9), (10) for s = t and from the facts that Ht+1 is nondecreasing
and U ′

n,t+1 nonincreasing:

U ′
n,t(x) = E(U ′

n,t+1(x + ξ̃n,t+1(x)∆St+1)|Ft) ≥ U ′
n(Ht+1(|x| + RM̂t+1(|x|))),

This, together with an upper estimate of the same kind, shows (10) for s = t − 1 with the
choice

Ht(u) := Ht+1(u + RM̂t+1(u)), u ∈ R+.

Now we want to prove that a bounded optimal strategy ξ̃n,t(x) exists. Let y > 0. As
Un,t is concave,

Un,t(−y) ≤ Un,t(0) − yU ′
n,t(0). (14)
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Using condition (8) for s = t − 1 we see that Un,t(0) ≤ Un(Mt(0)), and from Assumption
4.1 we get that

sup
n∈N̄

Un,t(0) < ∞. (15)

We now prove that infn∈N̄
U ′

n,t(0) > 0. For this purpose, introduce the following sets:

An,s+1 = {ξ̃n,s+1(0)∆Ss+1 ≤ 0}, s ≥ t.

From Assumption 2.2, P (An,s+1|Fs) ≥ κ. Apply (9) for s ≥ t:

U ′
n,t(0) = E(U ′

n,t+1(ξ̃n,t+1(0)∆St+1)|Ft) ≥ E(IAn,t+1U
′
n,t+1(0)|Ft)

≥ E(IAn,t+1 . . . IAn,T
U ′

n,T (0)|Ft),

iterating the same reasoning. We obtain that

U ′
n,t(0) ≥ U ′

n(0)E(IAn,t+1 . . . IAn,T
|Ft) ≥ κT−t inf

n∈N̄

U ′
n(0),

which is strictly positive by Assumption 4.1. So by (14) and (15) there exists a constant
Nt (independent from n) such that Un,t(−Nt) < −1 with probability one, for all n ∈ N̄.

Apply the estimations of the proof of Lemma 4.8 in Rásonyi and Stettner (2005) with
the choice V := Ut to an arbitrary ξ ∈ Ξt−1, ξ ∈ Dt, |ξ| 6= 0. In that Lemma C1 is taken
to be 0, but the argument can be easily adapted to yield

E(Un,t(x + ξ∆St)|Ft−1) ≤ |ξ|γLn,t(x) + 2C2|ξ|γ − |ξ|(1+γ)/2κ/2, (16)

whenever

C1 +
|x|

|ξ|(1+γ)/2
− |ξ|(1−γ)/2β < −Nt,

here Ln,t(x) is a random variable such that

0 ≤ Ln,t(x) ≤ 2U+
n,t(x + C1 + R) ≤ 2U+

n (|x| + C1 + R + Mt(|x| + C1 + R))

≤ 2 sup
n∈N̄

U+
n (|x| + C1 + R + Mt(|x| + C1 + R)) =: Gt(|x|),

and the latter is a deterministic function, nondecreasing in |x| and independent of n, by
Assumption 4.1.

Now there exists some deterministic function u → M̂t(u), u ∈ R+ (chosen to be nonde-
creasing) such that if |ξ(ω)| > M̂t(|x|) then

|ξ(ω)|γGt(|x|) + 2C2|ξ(ω)|γ − |ξ(ω)|(1+γ)/2κ/2 < inf
n∈N̄

Un(x − Mt(|x|)),

C1 +
|x|

|ξ(ω)|(1+γ)/2
− |ξ(ω)|(1−γ)/2β < −Nt,

here the infimum is finite by Assumption 4.1 again. Define the set A = {|ξ| > M̂t(|x|)} ∈
Ft−1. From (16) and (8) for s = t − 1 we have that on A,

E(Un,t(x + ξ∆St)|Ft−1) < Un(x − Mt(|x|)) ≤ E(Un,t(x)|Ft−1),

11



hence

E(Un,t(x + ξ∆St)|Ft−1) ≤ IAE(Un,t(x)|Ft−1) + IAcE(Un,t(x + ξ∆St)|Ft−1)

≤ E(Un,t(x + ξIAc∆St)|Ft−1),

with strict inequality on A. Assume that P (A) > 0 and apply the last inequality for
ξ = ξ̃n,t(x); then the strategy ξ̃n,t(x)IAc contradicts optimality. So (7) holds for s = t − 1.

It remains to prove that the strategies defined by (11) are optimal. Just like in
Proposition 5.3 of Rásonyi and Stettner (2005), we obtain that for any trading strategy
ψ ∈ Φ(Un, G, z):

E(Un(V z,ψ
T )|F0) ≤ Un,0(z) = E(Un(V

z,ψ∗

n(z)
T )|F0).

As Un,0(z) is finite and F0 is trivial one gets that un(G, z) = Un,0(z) < ∞, and for all

ψ ∈ Φ(Un, G, z), E(Un(V z,ψ
T )) ≤ E(Un(V

z,ψ∗

n(z)
T )) = un(G, z) < ∞. Thus ψ∗

n(z) is the
solution of

EUn(V z,ψ
T ) → max., ψ ∈ Φ(Un, G, z).

By induction, it is easy to see from (7) that (12) holds with

Υ1(u) = M̂1(u) and Υt+1(u) = M̂t+1

(

u + R

t
∑

s=1

Υs(u)

)

.

2

Corollary 4.6 Under the conditions of Theorem 4.4, there exist nondecreasing functions
Ft : R+ → R+, 0 ≤ t ≤ T such that for all n ∈ N̄

|V z,ψ∗

n(z)
t | ≤ Ft(|z|) a.s.

for the optimal strategies ψ∗
n(z) constructed in the previous Theorem.

Proof. Indeed, define Ft(u) := u + R
[

∑t
j=1 Υj(u)

]

. 2

4.2 Uniqueness

Proposition 4.7 If we assume, in addition to conditions of Theorem 4.4, that the Un are
strictly concave for n ∈ N̄ then the Un,t (and thus un(G, ·) = Un,0) are strictly concave a.s.
for all t = 0, . . . , T and there exists a unique optimal strategy ψ∗

n such that almost surely
ψ∗

n,t ∈ Dt, for all t = 1, . . . , T .

Proof. To see strict concavity we argue by backward induction : the case s = T is trivial,
suppose that for some s < T , x 6= y and 0 < α < 1 we have

Un,s(αx + (1 − α)y) = αUn,s(x) + (1 − α)Un,s(y),

on a set A ∈ Fs of positive probability. By concavity of Un,s+1 and optimality of ξ̃n,s+1(αx+
(1 − α)y) we have

E(αUn,s+1(x + ξ̃n,s+1(x)∆Ss+1) + (1 − α)Un,s+1(y + ξ̃n,s+1(y)∆Ss+1)|Fs) ≤
E(Un,s+1(αx + (1 − α)y + [αξ̃n,s+1(x) + (1 − α)ξ̃n,s+1(y)]∆Ss+1)|Fs) ≤

E(Un,s+1(αx + (1 − α)y + ξ̃n,s+1(αx + (1 − α)y)∆Ss+1)|Fs).

12



On A, the first and the third lines are equal, so from the equality of the first and the second
lines we get

IA

(

αUn,s+1(x + ξ̃n,s+1(x)∆Ss+1) + (1 − α)Un,s+1(y + ξ̃n,s+1(y)∆Ss+1)
)

=

IAUn,s+1(αx + (1 − α)y + [αξ̃n,s+1(x) + (1 − α)ξ̃n,s+1(y)]∆Ss+1).

On A one has, by strict concavity of Un,s+1,

x + ξ̃n,s+1(x)∆Ss+1 = y + ξ̃n,s+1(y)∆Ss+1.

As x 6= y, the quantity ξ̃n,s+1(x) − ξ̃n,s+1(y) is nonzero, so we get on A,

x − y

ξ̃n,s+1(x) − ξ̃n,s+1(y)
= ∆Ss+1.

Thus Ds+1 6= {0} on A. Moreover the left-hand side is Fs-measurable, so we arrive at
a contradiction as ∆Ss+1 has nondegenerate conditional distribution by Assumption 2.2.
Unicity of ξ̃n,t is a consequence of Theorem 2.8 in Rásonyi and Stettner (2005). 2

5 Facts about convergence

Corollary 5.1 Suppose that Assumptions 2.2, 2.4 and 2.6 hold. Then Un,t converges to
U∞,t almost surely, uniformly on compacts, for all 0 ≤ t ≤ T .
In particular, un(G, ·) = Un,0(·) converges to u∞(G, ·) = U∞,0(·) uniformly on compacts.

Proof. It suffices to establish almost sure convergence pointwise as by monotonicity and
concavity of Un,t this entails almost sure uniform convergence on compact sets, see p. 90 of
Rockafellar (1970). Assumption 2.4 and strict monotonicity of U∞ imply that Assumption
4.1 holds and hence Theorem 4.4 applies. It is clear from (6) that

Un,t(x) = E(Un(x +
T

∑

i=t+1

〈φ∗
n,i, ∆Si〉)|Ft),

where

φ∗
n,t+1 := ξ̃n,t+1(x), φ∗

n,j := ξ̃n,j(x +

j−1
∑

i=t+1

〈φ∗
n,i, ∆Si〉), j > t + 1.

Define

ln := x +
T

∑

i=t+1

〈φ∗
n,i, ∆Si〉, n ∈ N̄.

Then we have

lim inf
n→∞

Un,t(x) = lim inf
n→∞

E(Un(ln)|Ft)

≥ lim inf
n→∞

E(Un(l∞)|Ft) = E(U∞(l∞)|Ft) = U∞,t(x),

by optimality of φ∗
n, Assumption 2.4, Remark 2.5 and the fact that the random variable l∞

is bounded by (12).
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In fact, all the ln are bounded, uniformly in n ∈ N̄ (we will denote by K such a bound)
and recalling (8), the random variables Un,t(x) = E(Un(ln)|Ft) are also bounded, uniformly
in n ∈ N̄. Hence by Lemma 2 of Kabanov and Stricker (2001), there exists an Ft-measurable
random subsequence σn such that

lim sup
n→∞

Un,t(x) = lim
n→∞

Uσn,t(x).

Using again Lemma 2 of [5] for the uniformly bounded sequence lσn we can extract
another random subsequence (for which we will keep the same notation) such that lσn

converges to some l∗.

|E(Uσn(lσn)|Ft) − E(U∞(l∗)|Ft)| ≤ |E(Uσn(lσn)|Ft) − E(U∞(lσn)|Ft)| +
|E(U∞(lσn)|Ft) − E(U∞(l∗)|Ft)|.

The first term is o(1) using the uniform convergence on compact sets of Un to U∞ and the
fact that lσn are uniformly bounded by K. As lσn → l∗, U∞ is continuous, |U∞(lσn)| is
uniformly bounded, we can use Lebesgue’s theorem and the second term is also o(1). As
the set of portfolio values is closed in probability (see e.g. the argument of Theorem 1 in
Kabanov and Stricker (2001)), l∗ is itself the value of a portfolio. Now

lim sup
n→∞

Un,t(x) = lim
n→∞

EUσn(lσn) = E(U∞(l∗)|Ft) ≤ E(U∞(l∞)|Ft) = U∞,t(x),

by optimality of l∞, finishing the proof of this Corollary. 2

The following Lemma will be used to establish the rate of convergence of the optimal
strategies.

Lemma 5.2 Suppose that S is bounded, Assumptions 2.2, 2.3, 2.6 and 2.8 hold. Consider
ξ̃n,s(x), n ∈ N̄, 1 ≤ s ≤ T as defined in Theorem 4.4. Then for all N > 0, almost surely,

sup
x∈[−N,N ]

|U ′
n,s(x) − U ′

∞,s(x)| ≤ Cs(N)g(n), n ∈ N, (17)

`s(N) ≤ |U ′′
n,s(x)| ≤ Ls(N), x ∈ [−N, N ], n ∈ N̄, (18)

sup
x∈[−N,N ]

|ξ̃n,s(x) − ξ̃∞,s(x)| ≤ Ks(N)g(n), n ∈ N, (19)

sup
x∈[−N,N ]

|Un,s(x) − U∞,s(x)| ≤ C̃s(N)g(n), n ∈ N, (20)

with suitable constants `s(N), Ls(N), Cs(N), Ks(N), C̃s(N) > 0 and for all 0 ≤ s ≤ T .

Proof. Assumption 2.3 assures the uniqueness of the optimal strategy by Proposition 4.7,
which will crucial in the arguments of Sublemma below.

We remark that under Assumption 2.8, Assumption 4.1 is satisfied, so Theorem 4.4
applies. From now on we suppose d = 1 for the sake of simplicity. Let R be a constant
bound for the process |∆S|. The proof is by backward induction. (20), (17) and (18) are
clear for s = T from Assumption 2.8 and Remark 2.9, (19) follows just like in the induction
step below, so let us proceed to the induction step immediately.

Assume that (20), (17), (18) and (19) hold for s ≥ t. Let us establish them for s = t−1.
Let N > 0 and x ∈ [−N, N ], we apply (6), (9) and (7) of Theorem 4.4 for s = t− 1 and set
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Xt = N + RM̂t(N). Then, using the induction hypotheses, (17) holds true because of

|U ′
n,t−1(x) − U ′

∞,t−1(x)| ≤
E(|U ′

n,t(x + ξ̃n,t(x)∆St) − U ′
∞,t(x + ξ̃∞,t(x)∆St)||Ft−1) ≤

E(|U ′
n,t(x + ξ̃n,t(x)∆St) − U ′

∞,t(x + ξ̃n,t(x)∆St)||Ft−1)

+E(|U ′
∞,t(x + ξ̃n,t(x)∆St) − U ′

∞,t(x + ξ̃∞,t(x)∆St)||Ft−1) ≤
Ct(Xt)g(n) + E(|∆St(ξ̃n,t(x) − ξ̃∞,t(x))| sup

y∈[−Xt,Xt]
|U ′′

∞,t(y)||Ft−1) ≤

Ct(Xt)g(n) + Lt(Xt)RKt(N)g(n) =: Ct−1(N)g(n).

Let us define the random functions

fn,t(x, ξ) := E(U ′
n,t(x + ξ∆St)∆St|Ft−1), x, ξ ∈ R, n ∈ N̄.

Sublemma 5.3 We claim that for all n ∈ N̄ the random functions fn,t have continuous
differentiable versions (in both variables). Un,t−1 have twice continuously differentiable
versions (in x), ξ̃n,t(x) have continuously differentiable versions (in x). Furthermore,

ξ̃′n,t(x) = −∂1fn,t(x, ξ̃n,t)

∂2fn,t(x, ξ̃n,t)
, (21)

∂1fn,t(x, ξ) = E(U ′′
n,t(x + ξ∆St)∆St|Ft−1), (22)

∂2fn,t(x, ξ) = E(U ′′
n,t(x + ξ∆St)(∆St)

2|Ft−1), (23)

U ′′
n,t−1(x) = E(U ′′

n,t(x + ξ̃n,t(x)∆St)(1 + ξ̃′n,t(x)∆St)|Ft−1). (24)

Proof of Sublemma. Continuous differentiability of fn,t as well as the form of the derivatives
can be established in the same way as Proposition 6.4 of Rásonyi and Stettner (2005), using
the bounds in Theorem 4.4 and the induction hypotheses of Lemma 5.2. Then (22) and
(23) follow.

Smooth version of ξ̃n,t will be provided by the implicit function theorem. To see this,
notice that by optimality of ξ̃n,t(x) and regularity of fn,t,

∀x fn,t(x, ξ̃n,t(x)) = 0, (25)

on a set of probability one. Moreover, by strict concavity of Un,t, ξ̃n,t(x) is the unique
solution of equation (25). For all N > 0,

|∂2fn,t(x, ξ)| ≥ `t(N + R|ξ|)E((∆St)
2|Ft−1)

≥ `t(N + R|ξ|)E((∆St)
21{∆St>β}|Ft−1)

≥ β2`t(N + R|ξ|)P (∆St > β|Ft−1)

≥ κβ2`t(N + R|ξ|) > 0, x ∈ [−N, N ],

by (18) and Assumption 2.2. Hence by the implicit function theorem (see p. 150 of Zeidler
(1986)) there exist continuously differentiable (random) functions ζn : R → R such that on
a set of probability one

∀y fn,t(y, ζn(y)) = 0.

Indeed, the result holds true in some neighbourhood of any real point and by unicity of the
implicit function it remains true on the whole real line. Again, by unicity of the solution
of equation (25) we necessarily have

∀x ζn(x) = ξ̃n,t(x) a.s.
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so ξ̃n,t can be choosen to be continuously differentiable in x. Finally, U ′′
n,t−1 exists and is

of the form (24) by (9) for s = t − 1 and arguments akin to those of Proposition 6.4 in
Rásonyi and Stettner (2005). One has to establish that Lebesgue’s theorem applies when
taking the derivative behind the expectation: (21), the estimates (7), (18) and Assumption
2.2 testify that

U ′′
n,t(x + ξ̃n,t(x)∆St)(1 + ξ̃′n,t(x)∆St)

is uniformly bounded when x stays in a compact, so we may indeed differentiate under the
expectation. 2

Now we turn our attention to (18) for s = t − 1. Define the new measures Wn by

αn := −EU ′′
n,t(x + ξ̃n,t(x)∆St),

wn =
dWn

dP
:=

−U ′′
n,t(x + ξ̃n,t(x)∆St)

αn
,

χn,t−1 := E(αnwn|Ft−1).

First note that χn,t−1 ≥ `t(N + RM̂t(N)), by (7) and (18) for s = t. If we denote W -
conditional expectation and variance by EW (·|Ft−1) and D2

W (·|Ft−1), we get

EWn(∆St|Ft−1)
2χn,t−1

EWn((∆St)2|Ft−1)
=

E(wn∆St|Ft−1)
2E(αnwn|Ft−1)E(wn|Ft−1)

E(wn|Ft−1)2E(wn(∆St)2|Ft−1)

= αn
E(wn∆St|Ft−1)

2

E(wn(∆St)2|Ft−1)
.

From (24) we get that for x ∈ [−N, N ]

−U ′′
n,t−1(x) = E

(

αnwn

(

1 − E(αnwn∆St|Ft−1)

E(αnwn(∆St)2|Ft−1)
∆St

)

|Ft−1

)

= χn,t−1 −
EWn(∆St|Ft−1)

2χn,t−1

EWn((∆St)2|Ft−1)

= χn,t−1

D2
Wn

(∆St|Ft−1)

EWn((∆St)2|Ft−1)

≥ `t(N + RM̂t(N))
1

R2
D2

Wn
(∆St|Ft−1),

The right-hand side is greater than or equal to

`2
t (N + RM̂t(N))

Lt(N + RM̂t(N))

1

R2
β2κ =: `t−1(N),

by Assumption 2.2 and

wn ≥ `t(N + M̂t(N)R)

Lt(N + M̂t(N)R)
,

which is true again by (18) for s = t. This shows the first inequality of (18) for s = t − 1.
The proof of the second inequality is easy and hence omitted. We know from Assumption
2.2, (23) and (18) (which has just been proved for t − 1) that for all n ∈ N̄:

1

infn,|ξ|≤M̂t−1(N),|x|≤N |∂2fn,t−1(x, ξ)| ≤
1

κβ2`t−1(N + RM̂t−1(N))
=: mt−1.
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By the Lagrange mean-value theorem applied to ξ → fn,t−1(x, ξ), one has for x ∈ [−N, N ]

|ξ̃n,t−1(x) − ξ̃∞,t−1(x)| ≤ mt−1|fn,t−1(x, ξ̃n,t−1(x)) − fn,t−1(x, ξ̃∞,t−1(x))|
= mt−1|f∞,t−1(x, ξ̃∞,t−1(x)) − fn,t−1(x, ξ̃∞,t−1(x))|
≤ mt−1Ct−1(N + M̂t−1(N)R)Rg(n) =: Kt−1(N)g(n),

where we used (25) for the equality and (17) for s = t − 1 in the second inequality. This
ends the proof of (19) for s = t − 1. Let x ∈ [−N, N ]. Then (20) follows from

|Un,t−1(x) − U∞,t−1(x)| ≤ |Un,t−1(0) − U∞,t−1(0)| +
∫ x

0
|U ′

n,t−1(y) − U ′
∞,t−1(y)|dy.

As
∫ x
0 |U ′

n,t−1(y)−U ′
∞,t−1(y)|dy ≤ NCt−1(N)g(n), it remains to estimate the first term on

the right-hand side.

|Un,t−1(0) − U∞,t−1(0)| ≤ |E(Un,t(ξ̃n,t(0)∆St)|Ft−1) − E(U∞,t(ξ̃∞,t(0)∆St)|Ft−1)|
≤ sup

y∈[−M̂t(0)R,M̂t(0)R]

|Un,t(y) − U∞,t(y)|

+E(U ′
∞,t(−M̂t(0)R)|ξ̃n,t(0) − ξ̃∞,t(0)|R|Ft−1)

≤ C̃t(M̂t(0)R)g(n) + U ′
∞(−Ht(M̂t(0)R))Kt(0)Rg(n),

using (6) and (17) for s = t− 1, the fact that U ′
∞,t is nonincreasing, (20), (10) and (19) for

s = t. Define

C̃t−1(N) =: C̃t(M̂t(0)R) + U ′
∞(−Ht(M̂t(0)R))Kt(0)R + NCt−1(N),

this completes the induction step and hence the proof. 2

6 Proof of the main results

Proof of Theorem 2.11. Suppose that the Theorem fails and we have ψ∗
n,t(z) 9 ψ∗

∞,t(z)
for some t and z ∈ R. We may and will suppose ψ∗

n,s(z) → ψ∗
∞,s(z) a.s. 1 ≤ s < t. The

ψ∗
n,t(z), n ∈ N are uniformly bounded by (12), hence an argument similar to that of Lemma

2 in Kabanov and Stricker (2001) provides an Ft−1-measurable random subsequence n(k)
such that

ψ∗
n(k),t(z) → ψ̂t a.s., k → ∞,

and ψ̂t differs from ψ∗
∞,t(z) on a set A ∈ Ft−1 of positive measure. Define ψ̂s := ψ∗

∞,s(z)

for s < t. Then V
z,ψ∗

∞
(z)

t−1 = V z,ψ̂
t−1 and by (6) and (11),

U∞,t−1(V
z,ψ∗

∞
(z)

t−1 ) = E(U∞,t(V
z,ψ∗

∞
(z)

t−1 + ξ̃∞,t(V
z,ψ∗

∞
(z)

t−1 )∆St)|Ft−1)

= E(U∞,t(V
z,ψ∗

∞
(z)

t )|Ft−1).

As Assumption 2.3 holds, the maximizer is unique (see Proposition 4.7) so on A we
obtain

E(U∞,t(V
z,ψ̂
t )|Ft−1) < E(U∞,t(V

z,ψ∗

∞
(z)

t )|Ft−1). (26)
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Then,

|E(Un(k),t(V
z,ψ∗

n(k)

t )|Ft−1) − E(U∞,t(V
z,ψ̂
t )|Ft−1)| ≤

E(|Un(k),t(V
z,ψ∗

n(k)

t ) − U∞,t(V
z,ψ∗

n(k)

t )||Ft−1) + E(|U∞,t(V
z,ψ∗

n(k)

t ) − U∞,t(V
z,ψ̂
t )||Ft−1).

By Corollaries 4.6, 5.1 and Lebesgue’s theorem, the first term is o(1). As ψ∗
n(k),s(z) →

ψ̂s, s ≤ t ; V
z,ψ∗

n(k)

t → V z,ψ̂
t , continuity of U∞,t, Corollary 4.6 and Lebesgue’s theorem

imply that the second term is also o(1).
Using Corollaries 4.6, 5.1 and continuity of U∞,t−1, we can also prove that

Un(k),t−1(V
z,ψ∗

n(k)

t−1 ) = E(Un(k),t(V
z,ψ∗

n(k)

t )|Ft−1) → U∞,t−1(V
z,ψ∗

∞

t−1 ) = E(U∞,t(V
z,ψ∗

∞

t )|Ft−1),

almost surely as k → ∞, so E(U∞,t(V
z,ψ∗

∞

t )|Ft−1) = E(U∞,t(V
z,ψ̂
t )|Ft−1), and we get a

contradiction to (26).
2

Proof of Theorem 2.12. If not otherwise stated, suprema are taken on [−N, N ]. We apply
forward induction, the first step is as follows. Let N > 0, from (11) we have:

sup
z

|ψ∗
n,1(z) − ψ∗

∞,1(z)| = sup
z

|ξ̃n,1(z) − ξ̃∞,1(z)| ≤ K1(N)g(n),

using (19), so we can set J1(N) = K1(N). By Theorem 4.4, Corollary 4.6, Lemma 5.2,
Sublemma 5.3, Assumption 2.2 and the induction hypotheses:

sup
z

|ψ∗
n,t(z) − ψ∗

∞,t(z)| = sup
z

|ξ̃n,t(V
z,ψ∗

n(z)
t−1 ) − ξ̃∞,t(V

z,ψ∗

∞
(z)

t−1 )| ≤

sup
z

|ξ̃n,t(V
z,ψ∗

n(z)
t−1 ) − ξ̃∞,t(V

z,ψ∗

n(z)
t−1 )| + sup

z
|ξ̃∞,t(V

z,ψ∗

n(z)
t−1 ) − ξ̃∞,t(V

z,ψ∗

∞
(z)

t−1 )| ≤

Kt(Ft−1(N))g(n) + |V z,ψ∗

n(z)
t−1 − V

z,ψ∗

∞
(z)

t−1 | sup
y∈[−Ft−1(N),Ft−1(N)]

|ξ̃′∞,t(y)| ≤

Kt(Ft−1(N))g(n) +
Lt(Ft−1(N) + M̂t(N)R)R

`t(Ft−1(N) + M̂t(N)R)β2κ
g(n)R

t−1
∑

j=1

Jj(N) =: Jt(N)g(n).

The convergence rate of un(G, x) = Un,0(x) follows from (20). 2

Proof of Theorem 2.15. Theorem 6.2 of Rásonyi and Stettner (2005) shows that Qn(z)
is indeed an equivalent martingale measure. By Scheffé’s theorem it suffices to establish
almost sure convergence of dQn(z)/dP and this will imply convergence in the total variation
norm as well as (4). To see almost sure convergence we proceed as follows:

|U ′
n(V

z,ψ∗

n(z)
T ) − U ′

∞(V
z,ψ∗

∞
(z)

T )| ≤ |U ′
n(V

z,ψ∗

n(z)
T ) − U ′

∞(V
z,ψ∗

n(z)
T )| +

+|U ′
∞(V

z,ψ∗

n(z)
T ) − U ′

∞(V
z,ψ∗

∞
(z)

T )|.

As |V z,ψ∗

n(z)
T | ≤ FT (|z|), Remark 2.5 implies that the first term goes to zero a.s. By Theorem

2.11, V
z,ψ∗

n(z)
T → V

z,ψ∗

∞
(z)

T and by continuity of U ′
∞, the second term tends to 0 a.s. Thus

U ′
n(V

z,ψ∗

n(z)
T ) → U ′

∞(V
z,ψ∗

∞
(z)

T ), n → ∞,
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almost surely. This sequence is bounded by supn∈N U ′
n(−FT (|z|)) (which is finite by Remark

2.5). Hence Lebesgue’s theorem implies

EU ′
n(V

z,ψ∗

n(z)
T ) → EU ′

∞(V
z,ψ∗

∞
(z)

T ), n → ∞.

Now, it is easy to see that if two sequences xn and yn converge to x∞ and y∞ respectively and
yn is bounded away from 0, then xn/yn converges to x∞/y∞. This observation remains true
if the convergences are at the same rate g(n). We want to apply to the present case with the

choice xn := U ′
n(V

z,ψ∗

n(z)
T ), yn := Exn. Indeed, yn ≥ infn∈N U ′

n(FT (|z|)) > 0, by convergence
of the U ′

n → U ′
∞ and strict monotonicity of U ′

∞; so we get that dQn(z)/dQ → dQ∞(z)/dQ
a.s.

Under the additional Assumption 2.8 of Theorem 2.12, the previous estimations get
more precise, indeed, for all z ∈ [−N, N ],

|U ′
n(V

z,ψ∗

n(z)
T ) − U ′

∞(V
z,ψ∗

∞
(z)

T )| ≤ sup
y∈[−FT (|z|),FT (|z|)]

|U ′
n(y) − U ′

∞(y)| +

|V z,ψ∗

n(z)
T − V

z,ψ∗

∞
(z)

T | sup
y∈[−FT (|z|),FT (|z|)]

|U ′′
∞(y)|

≤ C(FT (N))g(n) + L(FT (N))Rg(n)
T

∑

j=1

Jj(N).

This proves that xn → x∞ at the given rate g(n) and by Lebesgue’s theorem the same
holds for yn. 2

Proof of Theorem 2.17. Let p be any accumulation point of the sequence pn(G, x) (which
is included in [0, ‖G‖∞]), and let nk be a subsequence along which

lim
k→∞

pnk
(G, x) = p.

Note that

|unk
(G, x + pnk

(G, x)) − u∞(G, x + p)| ≤ |unk
(G, x + pnk

(G, x)) − u∞(G, x + pnk
(G, x))|

+|u∞(G, x + pnk
(G, x)) − u∞(G, x + p)|.

The first term tends to 0 by Corollary 5.1 and the fact that x+pnk
(G, x) ∈ [−|x|, |x|+‖G‖∞].

The second one is o(1) by the continuity of u∞(G, .) and pnk
(G, x) → p. Since by definition

of pnk
(G, x),

unk
(G, x + pnk

(G, x)) = unk
(0, x),

and we know from Corollary 5.1 that unk
(0, x) → u∞(0, x), we get that

u∞(G, x + p) = u∞(0, x),

and then necessarily p = p∞(G, x), by definition. 2
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